lunes, 19 de octubre de 2009

Funcionamiento del helicóptero

Rotor:

Las palas del rotor tienen una forma aerodinámica similar a las alas de un avión, es decir, curvadas formando una elevación en la parte superior, y lisas o incluso algo cóncavas en la parte inferior (perfil alar). Al girar el rotor esta forma hace que se genere sustentación, la cual eleva al helicóptero. La velocidad del rotor principal es constante, y lo que hace que un helicóptero ascienda o descienda es la variación en el ángulo de ataque que se da a las palas del rotor: a mayor inclinación, mayor sustentación y viceversa.

Una vez en el aire, el helicóptero tiende a dar vueltas sobre su eje vertical en sentido opuesto al giro del rotor principal. Para evitar que esto ocurra, salvo que el piloto lo quiera, los helicópteros disponen en un lado de su parte posterior de una hélice más pequeña, denominada rotor de cola, dispuesta verticalmente, que compensa con su empuje la tendencia a girar del aparato y lo mantiene en una misma orientación.








Movimiento:

Si hacemos que las palas, únicamente al pasar por el sector 0º a 180º aumenten ligeramente su ángulo de incidencia y luego vuelvan a su inclinación original, el empuje del rotor será mayor en el sector de 0º a 180º y el helicóptero en vez de mantenerse parado, tiende a inclinarse hacia adelante, ya que por efecto girsocopico la resultante aparece aplicada 90° hacia el sentido de rotacion produciendo así que el empuje total se realice de manera inclinada pudiendo desplazar en aparato en función del coseno del ángulo del vector de la tracción de las palas del helicóptero. Si las palas aumentan el ángulo de incidencia en el sector de 270º a 90º, el empuje será mayor por la parte trasera y el helicóptero tiende a inclinarse hacia la derecha, al igual que en el caso anterior por efecto giroscopico.

Los helicópteros no varían la velocidad de las palas ni inclinan el eje del rotor para desplazarse. Lo que hacen es variar ligeramente y de forma cíclica el paso (inclinación) de las palas con respecto al que ya tienen todas (el colectivo de las palas). Ese aumento cíclico en un sector, hace que el helicóptero se desplace hacia el lado opuesto. Ahora se entenderá mejor porqué el mando de dirección de un helicóptero se llama cíclico y el mando de potencia se llama colectivo.


miércoles, 14 de octubre de 2009

Tarea 12.10.09

La velocidad del sonido:

La velocidad del sonido en el aire (a una temperatura de 20 °C) es de 343 m/s. Si deseamos obtener la equivalencia en kilómetros por hora podemos determinarlo mediante la siguiente conversión física:
Velocidad del sonido en el aire [km/hr) = (343m /1s)*(3600s/1hr)*(1km/1000m) Velocidad del sonido en el aire = 1,234.8 km/h.

En el aire, a 0 °C, el sonido viaja a una velocidad de 331 m/s y si sube en 1 °C la temperatura, la velocidad del sonido aumenta en 0,6 m/s.

En el agua (a 25 °C) es de 1.493 m/s.

En la madera es de 3.900 m/s.

Jet supersónico:

En un jet supersónico se sobreenfría un gas rápidamente mediante una expansión adiabática a través de un pequeño orificio o tobera desde una zona de alta presión a otra zona de baja presión o alto vacío evitando que las moléculas condensen.

Las principales ventajas de estos sistemas son que producen muestras en estado gaseoso y a temperaturas muy bajas, del orden de pocos grados kelvin.

Uno de los factores que definen el flujo es el número de MACH que se define como la relación entre la velocidad del flujo y la velocidad local del sonido. En un gas ideal, la velocidad del sonido depende de la temperatura, y en estos sistemas en los que la temperatura es muy baja, la velocidad del sonido es baja y se pueden alcanzar números de Mach muy altos.

Si el número de Mach es igual o superior a 1 el flujo se denomina supersónico y por esta razón estos sistemas experimentales se denominan jet supersónicos, y no porque la velocidad sea muy alta.





Scramjet

Scramjet (Estatorreactor de combustión supersónica) es una variación de un estatorreactor con la distinción de que una parte o la totalidad del proceso de combustión se lleva a cabo supersónicamente. A mayores velocidades, es necesario combustión supersónica para maximizar la eficiencia del proceso de combustión. Las proyecciones para la velocidad de un motor scramjet (sin aportes adicionales oxidiser) varían entre Mach 12 y Mach 24 (velocidad orbital). El X-30 la investigación dio a Mach 17, debido a cuestiones de tipo de combustión. A modo de contraste, el más rápido convencionales de aire para respirar, los vehículos tripulados, como los EE.UU. la Fuerza Aérea SR-71(Blackbird), aproximadamente alcanzar Mach 3,4 y cohetes desde el programa Apolo logrado Mach 30 +.